20MCA17/2
ADVANCED OPERATING SYSTEMS

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Module 1-Part 1

Prof. BABY SYLA L.
COLLEGE OF ENGINEERING TRIVANDRUM

Module-1

" Overview: Functions of Operating System —Design Approaches —
Types of Advanced Operating Systems.

(2 hours)

" Synchronization Mechanisms: Concept of Processes and Threads —
The Critical Section Problem — Other Synchronization Problems:—
Monitor —Serializer — Path Expressions.

(4 hours)

" Distributed Operating Systems:- Issues in Distributed Operating
System — Communication Networks And Primitives —Lamport’s
Logical clocks — Causal Ordering of Messages

(4 hours)

" Textbook:

Mukesh Singhal and Niranjan G. Shivaratri, “Advanced Concepts 1n
Operating Systems

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum 3

1.1 Operating System Overview

What is an operating system?

*An operating system is a layer of software on a bare hardware

machines.

*What are the functions of an Operating system?...

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Abstract view of computer system

Acrobat Exchange - [Pages from fig01.01.pdf] 8| o | 25 | | 5 | o | R) | 2] 0 2L
i =@l

FEile Edit Document Miew Tools Window Help

Ay 1] o] pE) s slelsd]

user L. user
3 n

assembler text editor _— database
system

compiler

system and application programs

operating system

computer hardware
[BPagedof1 | 0 316% | [F482x3860n |4 ¥ -
#Start| ®Real | Holient | 3Exceed EMion | BPMicn | oalen | F3remi | B¥Diect | Wmicra | 5)Explo_ |[FAcra... xerm | olide G 228 PM

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Functions of an OS

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Basic functions of Operating System

1. Resource management

. A user program access several hardware
and software resources during its execution.

. [t 1s the operating system that manages the
resources and allocates them to users in an
efficient and fair manner

" ’xamples of Resources are CPU, Main
memory, input-output devices and various types
of software (Compiler 1linker-loader, files etc..)

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Resource management Functions:

" Time management(CPU and disk scheduling)
" Space management(Main memory and secondary storage)
" Process synchronization and deadlock handling

" Accounting and status information.

2.User friendliness

" hides the unpleasant, low-level details of a bare hardware
machine

" provides users with a much friendlier intertace to the
machine.

" To load, manipulate, print and execute programs ,high-level
commands can be used without the inconvenience of
worrying about the low-level details.

® User friendliness Tasks:

" Execution environment(process management-creation,
control and termination)

" Error detection and handling
" Protection and security

" [Fault tolerance and failure recovery

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

5/1/2021

Design of Operating Systems

Prof.BABY SYLA L ,College of Engineering Trivandrum

10

Monolithic kernel Structure

Traditionally, systems such as Unix ,DOS were built as a
monolithic kernel:

user programs

file system, virtual memory,
[/0O drivers, process control,

OS kernel everything system services, swapping,
networks, protection,
interrupt handling,
windows, accounting, ...

hardware

16

Monolithic Operating System

Application Application
Program e Program

User Moda

I I Kemel Mode

Systamn Sarvices

Opanating
System
Procedures

‘_
— Hardware ‘

Design Approaches :

1. Layered Approach
2. Rernel based approach
3. Virtual Machine approach

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

13

Strategy for good design

" Policies vs Mechanisms
® Policies reter to what should be done .

" Mechanisms refer to how 1t should be done.

" A good design must separate policies from mechanisms.
" provides great flexibility.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

14

1. Layered Approach

" The operating system 1s divided into a number of
layers (levels), each built on top of lower layers.

®» Fach layer has well define functionality and 1/0
interfaces with the adjacent layers.

" The bottom layer (layer 0), 1s the hardware; the
highest (layer N) 1s the user interface.

* With modularity, layers are selected such that each
uses functions (operations) and services of only
lower-level layers.

Structuring/Layering

Traditional approach 1s layering: implement system
as a set of layers, where each layer 1s a virtual machine
to the layer above.

That 1s, each layer provides a “machine” that has higher
level features.

layer 3
layer 2

-] layel‘ 1 interface
layer 1 layer 0 “virtual
layer 0 “ machine”interface

———————————————— N AT A WaT€

hardware arch. interface
18

Layering in THE

The first description of this approach was Dijkstra’s
THE system.

user programs

170 device buffering

console device (commands)

memory management

CPU scheduling (processes)

hardware

Layered Operating System

layer O

hardware

Prof. BABY SYLA L ,College of

5/1/2021 . . .
Engineering Trivandrum

18

Older Windows System Layers

Application
Win 3.1 shell
DOS/Win 95/Win 98

0

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

19

Advantage of Layered OS

» Design and implementation is simple
» Easy to debug.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandru

20

5/1/2021

Problems with Layering

®Systems must be hierarchical, but real systems are
more complex than that, e.g.,

* file system would like to be a process layered on VM
« VM would like to use files for its backing store 1/0

® Approach 1s not flexible.

® Often has poor performance due to layer crossings.

Prof.BABY SYLA L ,College of Engineering Trivandrum

21

2. Kernel based Approach
* First suggested by Brinch Hansen.

* Only a few essential functions in the kernel:
* primitive memory management (address space)
* [/O and interrupt management
* Inter-Process Communication (IPC)
* basic scheduling
* Other OS services are provided by processes running in
user mode (vertical servers):
* device drivers, file system, virtual memory...

Microkernel Architecture

Application File Device
Program System Driver

messages i 2 messages

CPU
scheduling

memory

Interprocess
managment

Communication

. microkernel h

hardware

user
mode

kernel
mode

Layered vs. Microkernel Architecture

User
Mode

Kernel
Mode

5/1/2021

Users

File System

Interprocess Communication

/0 and Device Management

Virtual Memory

Primitive Process Management

(a) Layered kernel

User
Mode

Kernel .
Mode Microkernel

HARDWARE

ib) Microkernel

24

Microkernel System Structure

® Main function of microkernel 1s to provide a
communication facility between client program and
various services that are also running in user space.

®* Communication takes place between user modules
using message passing.

® It a client program wishes to access a file, 1t must
interact with file server.

® Client never interact with fileserver directly, they
communicate indirectly by exchanging messages with
the microkernel.

Benefits of a Microkernel Organization

* Extensibility/Reliability
e casier to extend a microkernel

* easler to port the operating system to new
architectures

* more reliable (less code 1s running in kernel mode)
* more secure
* small microkernel can be rigorously tested.

* Portability

* changes needed to port the system to a new processor
1s done 1n the microkernel, not in the other services.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Benefits of Microkernel Organization

® Distributed system support
* message are sent without knowing what the
target machine 1s.
®Object-oriented operating system

* components are objects with clearly defined
interfaces that can be interconnected to form
software.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

27

5/1/2021

Microkernel OS

"First microkernel system was Hydra (CMU,
1970)

"Examples of microkernel systems are the CMU
Mach system, Chorus (French Unix-like

system), and 1n some ways Microsoft
NT/Windows.

Disadvantage:

"performance overhead caused by replacing
service calls with message exchanges between
processes.

Prof.BABY SYLA L ,College of Engineering Trivandrum

28

3. Virtual Machines

" The fundamental 1dea of a virtual machine 1s to abstract the
hardware of a single machine into several different execution
environment .

" [t creates an 1llusion that each seperate execution
environment 1s running its own private computer.

" Virtual machines are created using virtual machine software
on bare hardware which creates the 1llusion by sharing the
resources among all users of the machine.

" Classical example of this system 1s IBM 370 system in which,
virtual machine software , VM/3870 provides a virtual
machine to each user.

Processes

)

kernel

hardware

(a)

programming/
&~ interface

on Bare Machine Implementation VM

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3
virtual-machine
implementation
hardware

(b)

30

Virtual Machines (2)

" User can run a single Operating system on the virtual machine.

" [t also allows the flexibility that different OS to run on
different VMs.

" ['xample:VMware

* VMware runs as an application on a host operating systems
such as windows or linux and allows to run several guest OS as

independent virtual machines.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum 31

VM Implementation on Host OS

Applications Applications Applications
and and - - - and
Processes Processes Processes
Virtual Virtual e o o Virtual
Machine 1 Machine 2 Machine n

Virtual Machine Monitor

Host Operating System

Shared Hardware

Advantages/Disadvantages of Virtual Machines

" The virtual-machine concept provides complete protection of
system resources since each virtual machine 1s 1solated from all
other virtual machines.

" A virtual-machine system 1s a perfect vehicle for operating-
systems research and development. System development 1s
done on the virtual machine, instead of on a physical machine
and so does not disrupt normal system operation.

" The virtual machine concept is ditticult to implement due to
the effort required to provide an exract duplicate to the
underlying machine.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

5/1/2021

Classification of Advanced OS

Prof.BABY SYLA L ,College of Engineering Trivandrum

34

Classification of Advanced OS

Advanced operating
systems

Architecture driven Application driven

\ - ‘ l

Distributed Multiprocessor Database Real-time
systems systems systems systems
FIGURE 13

A classification of advanced operating systems.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

1. Distributed operating systems:

" Operating systems for a network of autonomous computers
connected by a communication network.

" [t controls and manages the hardware and software resources
of a distributed systems such that user’s view the entire system
as a powerful Monolithic computer system.

" When a program 1s executed 1n a distributed system ,the user
1s not aware ot where the program is executed or of the
location of the resource 1s accessed.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum 36

Architecture of distributed system

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

37

Distributed operating systems Issues

" [ssues same as 1n the traditional operating systems,
" Process synchronization

" Deadlocks

" Scheduling

" ['lle systems

" [nter-process communication

* Memory and buffer management

* [ailure recovery

" LLack of shared memory and a physical global clock

* Unpredictable communication delays

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

38

2. Multiprocessor systems

* [t consists of a set of processors that shares a common
memory over an interconnection network.

* All the processors operate under the control of a
single OS.

* [t 1s called tightly coupled systems where processors
share a common address space.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

39

Multiprocessor systems

Memory Modules

Interconnection Netwerk

PI P2) P‘
FIGURE 16.1
A tightly coupled multiprocessor
Processors system.

A number of processors are connected to shared memory by an interconnection
network.

The shared memory 1s divided in to several modules and multiple modules can be
accessed by different processors concurrently.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

40

Multiprocessor operating systems:

" [t controls and manages the the hardware and software
resources such that the user’s view the entire system as a
powertul uniprocessor system.

® [ssues:
" Process synchronization
u Memory management

" Protection and security

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

41

Database operating systems:

Database systems place special requirements on operating
systems.

" Database operating systems must support
" the concept of transaction;

" operations to store, retrieve and manipulate a large
volume of data efficiently;

" primitives for concurrency control and system failure
recovery.

"'To store temporary data and data retrieved from

secondary storage , the OS must have proper buffer
management scheme.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum 42

Real time operating systems:

= A distinct feature of Real-time systems 1s that jobs
have completion deadlines.

HARD " A job should be completed before its deadline to be
SOFT of use.

m [ssues:

" Schedule maximum number of jobs that should
satisty their deadlines.

" Designing languages and primitives to effectively
prepare and execute a job schedule.

5/1/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum 43

Module 1-Part 2

Prof. BABY SYLA L.
COLLEGE OF ENGINEERING TRIVANDRUM

1.2 Synchronisation Mechanisms

5/4/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Concept of Process

" Process 1s a program whose execution has started but 1s not yet
complete

* 'Three basic states of process

1. Running — The processor 1s executing the instructions of
the corresponding process.

2. Ready — The process 1s ready to be executed, but the
processor 1s not allocated.

3. Blocked — The process 1s waiting for an event to occur.

Examples of event are I/O operation, sending
/recelving a message etc.

State transition diagram of a process

Submit Completion

Blocked
FIGURE 2.1

State transition diagram of a process.

5/4/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Process Control Block (PCB)

Process Control Block (PCB) 1s a data structure used by
operating system to store all the information about a
process.

[t 1s also known as Process Descriptor.

When a process 1s created, the operating system creates a
corresponding PCB.

Information 1n a PCB 1s updated during the transition of
process states.

When a process terminates, its PCB 1s released.

Each process has a single PCB.

Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state — running, waiting, etc
Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers

Memory-management information — memory allocated to
the process

Accounting information — CPU used, clock time elapsed
since start, time limits

[/0 status information — /O devices allocated to process,
list of open files

5/4/2021 Prof.BABY SYLA L,College of Engineering Trivandrum

process state

process number

program counter

reqgisters

memory limits

list of open files

Serial Processes Vs Concurrent processes

* Concurrent process — are not serial, execution can overlap in time.
* Concurrency in multiprocessor systems are easy to visualise.

* In single processor systems , physical concurrency occurs by interleaving the
CPU time and 1/0 time.

* Concurrent processes generally interact for information sharing , computation
speed up etc (Cooperating processes)

Inter process communication (IPC)
mechanisms

1. Shared variables
The processes access (read/write) a common variable or data
2. Message Passing
The processes exchange information by passing messages
(Send/Receive) with each other

Note: It the processes do not communicate , then it 1s same as serial
execution.

IPC mechanisms

a) Message passing

SEND(MSG,B)
RECEIVE (&BUF, A)

5/4/2021

process A

process B

b) Shared memory

process A

shared memory :I
process B

message queue

Mo

m4(Mo|Mg] ...

Mp

kernel

(a)

kernel

(b)

Prof.BABY SYLA L ,College of Engineering Trivandrum

Process and Thread

Process
Thread

* A process has a single address » A process can have multiple

space and a single thread of executions units called threads. All

control. the threads of a single process share

, , , , the same address space and have

* Process information is stored in multiple threads of control .

PCB * Each thread have separate thread
* Context switching 1s expensive . control block (TCB) to manage the

threads .

* Context switching 1s easy .

. h 1oh
called heavy weight process + Also called light weight processes.

Process Vs Thread

5/4/2021

Difference between Single vs. Multithread Process

N
code data || o code data e O ’) © State Data
 regislers stack regista:sl registers ||| registers PC'M
thread ——= ; ; ; é-—— threa ‘
, RRRENRES
SP (T2)
single-threaded process multithreadad process N :
m A process by itself can be viewed a single thread — H_I::DP__
and is traditi|ona|l1.r known as a heavy weight PC (T1)— i
pFDCESS PC{TH - g

. Process
PFDCESS with
: 2 threads
Prof.BABY SYLA L,College of Engineering Trivandrun - - - =« = =+« o« oo v oo e o e

More about threads ...

A single thread executes a portion of a program ,cooperating with
each other threads concurrently

* Each thread make use of a separate program counter and a stack of
activation records (that describes the state of execution) and a thread
control block.

* The control block contains the state information necessary for thread
management.

* Most ot the information that 1s part ot a process 1s common to all threads
executing within a single address space .

Process Synchronisation

| Prof. BABY SYLA L
COLLEGE OF EMGINEERING TRIVANDRUM

~ /\/Q/(ﬁ/) %@G/ F«sv C gu_ﬂuo/vgﬂm,
5 Chad Scemon AT

N S/WQ'W ok CS (ng

Critical Section Problem

* Critical section problem - problem which occurs when two or more
coordinating processes /threads trying to access a shared variable/ resource .

* It may violate the integrity of a shared variable

* Examples are
* Variable does not record all the changes.
* A process may read inconsistent values.
* IFinal value ot the variable do not be consistent.

* Critical section 1s a code segment 1n a process in which shared resource 1s
\
accessed.

5/7/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Solution to Critical Section Problem

* Process Synchronisation 1s necessary to solution to CS Problem.,

—

* Solution requires that processes be synchronised such that only one
process access the shared resource at a time.

* This 1s why CS problem 1s also called mutual exclusion problem.

* Difterent solutions were proposed .

* Requirements for solutions to mutual exclusion problems:

1.
2.

Only one process can execute CS at a time.

When no process 1s executing CS ,then requests for other process
should be permitted without any delay.

When two processes compete for entering to CS ,the selection can not
be postponed indefinitely

No process can prevent any other other process from entering 1ts
CS ,means each process should get a fair chance to share the resource.

Critical Section

* General structure of procéss P;

do {

—

entry section

critical section

exit section
remainder section

} while (true);

Early mechanisms of mutual exclusion

1. Hardware support: Some hardware instructions are provided to
support the programmer

* (e.g., busy waiting , disabling interrupts and ‘test&set’
Instruction)

2. Operating System Support: Operating system supports for the
declaration of data structures and also operations on those data

structures
* (e.g., semaphores)

3. High Level Language Support: Language provides support for
data structures and operations on them to help with synchronization.

* (e.g., critical regions, monitors, serializers, etc)

1. Hardware support:

* Busy waiting:
* Process continuously tests the status variable to find if the shared
resource 1s free .

* Disadvantage: Wastage of CPU cycles and memory access bandwidth

Disaling interrupts:

* Process disables the interrupt before entering 1ts CS and enables
immediately after exiting the CS.

* Applicable 1s only for uniprocessor systems.

Test and Set Instruction:
* Used 1n multiprocessor systems .
* This instruction performs a single indivisible operation in one clock

cycle.

* A specific memory location 1s checked for a particular value; it they
match ,its contents are altered.

Busy waiting

* General structure of process P; (other process P))

do {

check the status variable

critical section

reset the status variable

reminder section

} while (1);

Disabling interrupts

* General structure of process P; (other process P))

do {

Disable interrupts

critical section

Enable interrupts

reminder section

} while (1);

Mutual Exclusion with Test-and-Set

e Shared data:
boolean lock = false;

* Process P,
do {
while (TestAndSet(&lock)) ;
critical section
lock = false;

remainder section
} while(1);

2. Operating system support:

* Semaphores: is a high level construct used to synchronise concurrent processes

* It is an integer variable

* Can only be accessed via two indivisible (atomic) operations
* P(S) and V(S)

* Definition of the P(S) operation \/\/@r{ (< \)
{ while (S <= 0)
; // busy wait (block the process on semaphore queue)

S—=7;
o . 1 (5
* Definition of V(S) operation

{ S++; } / / if some processes are blocked on the semaphore S
unblock a process

Semaphore Usage

* Proposed in 1969 by Dijkstra for process synchronization
“Cooperating Sequential Processes”

Depending on the value of a semaphore allowed to take:

e Binary semaphore — integer value can range only
between 0 and 1. (Intial value=1)

>/' Counting semaphore — integer value can range over an
unrestricted domain (Initial value >1).

* A semaphore is initialized by the system.

Note: for any semaphore , the number of P operations —
number of V operations <= initial value

Binary semaphore

Shared var
mutex: semaphore (= 1);

Process i (i=1, n);

begin

P(mutex);

execute CS;

V(mutex);

- FIGURE 2.2

end. Solution to mutual exclusion using a semaphore.
5/7/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

12

Semaphore Implementation

* Must guarantee that no two processes can execute the p(s) and v(s)on the
same semaphore at the same time.

* Thus, the implementation becomes the critical section problem where p (s)
and v (s) code are placed in the critical section.

 Semaphore operations must be carefully installed in a process.
* The omission of P or V may results in inconsistencies.
* Programs using semaphores can be extremeiy hard to verify for correctness.

* Note that applications may spend lots of time in critical sections and therefore this is not a
good solution

5/7/2021

3. Language support:

* Monitors: are abstract datatypes for defining shared resources.

* It consists of condition variables and procedures combined together in a
special kind of module or a package.

* Procedures are called by the process to access the resource.

Monitor Demo /IName of Monitor

{

variables;
condition variables;

procedure p1 {....}
prodecure p2 {....}

Syntax of Monitor

Prof.BABY SYLA L,College of Engineering Trivandrum

14

Monitors

* The execution of a monitor obeys the following constraints:

* Only one process can be active within the monitor at a time.When a
process is active wuthin the monitor, processes trying to enter the
monitor are placed in the monitor’ entry queue.

* Procedures of a monitor can only access data local to the
monitor ,they cannot access an outside variable.

* The variables or data local to monitor cannot be directly accessed
from outside monitor.

Monitors

Two different operations are performed on the condition variables of the monitor.

1. wait() -suspends the caller process,caller relinquishes control of monitor and placed on an
urgent queue.

2. signal() — It causes exactly one waiting process to immediately regain the control of monitor.

* Processes in the urgent gueue have a higher priority than processes trying to enter the
monitor ,when a process relinquishes control of the monitor.

Process Synchronisation

Part-2

3. Language support:

* Monitors: are abstract datatypes for defining shared resources.

* [t consists of condition variables and procedures combined
together 1n a special kind of module or a package.

* Procedures are called by the process to access the resource.

Monitor Demo //iIName of Monitor

{

variables;
condition variables;

procedure p1 {....}
prodecure p2 {....}

Syntax of Monitor

5/10/2021 Prof.BABY SYLA L ,College of Engineering Trivandrum

Monitors

* The execution of a monitor obeys the following constraints:
* Only one process can be active within the monitor at a time.

* When a process 1s active within the monitor, processes trying to enter the
monitor are placed in the monitor’ entry queue.

* Procedures of a monitor can only access data local to the monitor ,they cannot
access an outside variable.

* The variables or data local to monitor cannot be directly accessed from outside
monitor.

Monitors

* To synchronize tasks within the monitor, a condition variable 1s used to
delay processes executing in a monitor.

* T'wo difterent operations are performed on the condition variables each
with its own queue.

1. wait() - suspends the caller process ,caller relinquishes control of
monitor and placed on an urgent queue.

2. signal() — It causes exactly one waiting process to immediately regain
the control of monitor.

Processes 1n the urgent queue have a higher priority than processes trying
to enter the monitor , when a process relinquishes control of the monitor.

Monitors :

Advantages

* Ilexibility in scheduling processes

* Disadvantages

Only one active process inside a monitor: no concurrency.
Responsibility of programmers to ensure proper
Nested monitor calls can lead to deadlocks:

Responsibility of valid programs shifts to programmers, difficult to validate

Serializers

* Serializers was a mechanism proposed in 1979 to overcome
some of the monitors’ shortcomings

* 1e, 1t allows
* Proposed by Hewitt and Atkinson
e Basic structure 1s similar to monitors

Definition:

Serializers are abstract data types defined by a set of procedures
(or operations) and can encapsulate the shared resources to form
a protected resource object.

* more , high-level mechanism

: Condition for resuming the execution
of a waiting process to be explicitly stated when a process
waits.

Concurrency 7

* As 1n a Monitor only one process can have accesses or control over a serializer at
a given time.

* But in the procedures of a serializer there are certain regions in which multiple
process can be active.

* These regions are known as Hollow regions.

* As soon as a process enters a hollow region, it releases the serializer so that some
other process can access it.

* Thus concurrency 1s achieved in the hollow regions of a serializer.

* Remember that in a hollow region the process just releases the serializer and
does not exit it. So that the process can regain control when 1t gets out of the
hollow region.

Serializers —Hollow region

* A hollow region in a procedure is specified by a join-crowd operation. The syntax of the
join-crowd command 1s

* On invocation of a join-crowd operation, possession of the serializer 1s released, the
identity of the process invoking the join-crowd is recorded in the crowd, and the list of
statements 1n the body 1s executed.

* When the process completes execution of the body, a leave-crowd operation 1s executed.
* As aresult of the leave-crowd operation the process regains control of the serializer.

* Please note that, if the serializer is currently in possession of some other process then
the process executing the leave crowd operation will result in a wait queue.

Structure of a procedure

Procedure

 Hollaw Region

FIGURE 2.7
The structure of a procedure of a senalizer.

Serializers- Queue variables

* whenever a process requests to gain or regain access of a serializer certain
conditions are checked.

* The process is held in a waiting queue until the condition is true. This 1s
accomplished using an enque operation.

* The syntax of the enque command 1s
enque (<priority>, <queue-name>) until (<condition>)

* The queue name specitfies the name ot the queue in which the process has to be
held and the priority options specifies the priority of the process to be delayed.

OPERATION OF SERIALIZER

SERIALIZER

Entry event

uarantee event

Join-Crowd event

B

Leave-Crowd
/) event

Exit event

Hollow Region - The serializer i5 released.

. The Serializer i3 in possession of asingle procees here,

As shown in the above figure, every operation in a serializer

can be identified as an event.

» An Entry event can be a request for serializer, in which a
condition will be checked. (For eg., Is the serializer free for
the process to enter ?)

» If the condition is true the process gains control of the
serializer.

» Then before the process accesses the resource, a guarantee
event is executed.

» The guarantee event results in an established event if the
condition is true, else the process releases the control of the
serializer and waits in its queue.

» When a resource is available the process enters (Join-Crowd
event) the Crowd and accesses the resource. After
completing the job with the resource, the process leaves
(Leave-Crowd event) the crowd and regains control of the
serializer (1f the serializer 1s available, else it has to wait).

» Serializers also allow a timeout event which can avoid
processes waiting for a condition longer than the specified
period.

Monitors vs Serializers

* Serializers have several advantages over the monitors.

* Only one process can execute inside a monitor.
Only one process can have possession of the serializer at a time. But in the
hollow regions the process releases the control and thereby facilitates several
process to execute concurrently inside the hollow region of the serializers.

* Nesting of monitors can cause deadlock. If inner process 1s waiting the outer
one will be tied up. Nesting of serializers are allowed in the hollow regions.

* In monitors the conditions are not clearly stated to exit from a wait state.
The conditions are clearly stated for an event to occur 1n a serializer.

* In monitors - explicit signalling.
In serializers implicit signalling.

Drawbacks

* More complex and hence less efficient.

* Automatic signalling process increases overhead, since whenever a resource or
serializer 1s released all the conditions are to be checked for the waiting processes.

PATH EXPRESSION

 What is a Path Expression?

* It is a declarative specification of synchronization between
procedures.

e Automatically generated code uses semaphores for the automatic
enforcement of the synchronization.

Path Expresiion

The Translator

Path expression ? translator ? code

* The path expression takes the form:

path (expr) : (expr) (expr) end

¢ The translator is a simple set of rules that does the automatic code generation.
* The code is a set of procedures with a prologue and an epilogue.

The prologue checks to see if the procedure can begin.

The epilogue tells when the procedure is finished.

PATH EXPRESSION

The concept of path expression was proposed by Campbell and Habermann [2]. Con-
ceptually, a “path expression”™ is a quite different approach to process synchronization.
A path expression restricts the set of admissible exeeution histories of the operations
on the shared resource so that no incorrect state is ever reached and it indicates the
order in which operations on a shared resource can be interleaved. A path expression
has the following form

path S end;

where S denotes possible execution histories. It is an expression whose variables are
the operations on the resource and whose operators are:

Operators

Sequencing (;). It defines a sequencing order among operations. For example,
path open; read; close; end means that an open must be performed first, followed by
a read and a close in that order. There is no concurrency in the execution of these
operations.

Selection (+). It signifies that only one of the operations connected by a + operator
can be executed at a time. For example, path read + write end means that only read
or only write can be executed at a given time, but the order of execution of these
operations does not matter.

Concurrency ({}). It signifies that any number of instances of the operation
delimited by { and } can be in execution at a time. For example, path {read} end means
that any number of read operations can be executed concurrently. The path expression
path write; {read} end allows either several read operations or a single write operation
to be executed at any time (read and write operations exclude each other). However,
whenever the system is empty after all readers have finished, the writer must execute

Operators contd..

first. Between every two write operations, at least one read operation must be executed.
The path expression path {write; read} end means that at any time there can be any
number of instantiations of the path write; read. At any instant, the number of read
operations executed is less than or equal to the number of write operations executed.
The path expression path {write + read} end is meaningless and does not impose any
restriction on the execution of read and write operations.

Operators

Operators
The expressions are formed from the following operators (where x and v are procedures or path expressions):

* sequencer: X;v
X must execute before v.
put:_ get
s restrictor: n:(x)
x has a maximum of n concurrent executions.
1:(write)
s derestrictor: [x]
x can have an unlimited number of concurrent executions.
read
s grouping: (...)
expresses precedence or nesting.
e compound example:

L:(write).[read

The Comma
The comma can be a

e OR - if procedure names on either side of the comma are different.
* composition (seperator) - if procedure names on either side of the comma are the same.

OTHER SYNCHRONISATION PROBLEMS

* One of the problem studied- Mutual exclusion
* Other problems :

* 1.Producer Consumer Problem

* 2.Reader’s writer Problem

* Dining Philosopher Problem

Dining Philosophers Problem (DPP)

large class 01 Ci

The dining philosophers Problem

Void philosopher (void)
{
while(true)
{
Thinking()
take forkl(i); // Left fork
take forkl(i+1)% N); // Right Fork
EAT();
put fork(i):
put fork((i+1)% N);

/I Left fork

/I Right fork

Producer — Consumer Problem

ner problem is a synchronization problem
and the producer produces items and enters them into the buffer

s the items from the buffer and consumes them

Problem Parameters

% A producer should not produce items into the buffer when the consumer is consuming an
item from the bufferand vice versa.
% The buffer should only be accessed by the producer or consumer at a time

Readers - writers problem : Svynchronization problem

There is a file that is shared between multiple processes. Some of these processes are readers(read data from file), others

are writers (write data into file),
Multiple readers can access the file at the same time.
If any user editing the file, no other person can read or write data at the same time

Problem parameters

Producer - Consumer Problem (Text book)

In the producer-consumer problem, a set of producer processes supplies messages to a
set of consumer processes. These processes share a common buffer pool where mes-
sages are deposited by producers and removed by consumers. All the processes are
asynchronous in the sense that producers and consumers may attempt to deposit and
remove messages, respectively, at any instant. Since producer processes may outpace
consumer processes (or vice versa), two constraints need to be satisfied; no consumer
process can remove a message when the buffer pool is empty and no producer process
can deposit a message when the buffer pool is full.

Integrity problems may arise if multiple consumers (or multiple producers) try
to remove messages (or try to put messages) in the buffer pool simultaneously. For
examples, associated data structures (e.g., pointers to buffers) may not be updated con-
sistently, or two producers may try to put messages in the same buffer. Therefore,
access to the buffer pool and the associated data structures must constitute a critical
section in these processes.

Readers- writers Problem(Text book)

In the readers-writers problem, the shared resource is a file that is accessed by both
the reader and writer processes. Reader processes simply read the information in the

file without changing its contents. Writer processes may change the information in the
file. The basic synchronization constraint is that any number of readers should be able
to concurrently access the file, but only one writer can access the file at a given time.
Moreover, readers and writérs must always exclude each other.

There are several versions of this problem depending upon whether readers or
writers are given priority.

Different options

Reader’s Priority. In the reader’s priority case, arriving readers receive priority over
waiting writers. A waiting or an arriving writer gains access to the file only when there
are no readers in the system. When a writer is done with the file, all the waiting readers
have priority over the waiting writers.

Writer’s Priority. In the writer's priority case, an arriving writer receives priority over
waiting readers. A waiting or an arriving reader gains access to the file only when there
are no writers in the system. When a reader is done with the file, waiting writers have
priority over waiting readers to access the file.

In the reader’s priority case, writers may starve (i.e., writers may wait indefinitely)
and vice-versa. To overcome this problem, a weak reader’s priority case or a weak
writer's priority case can be used. In a weak reader’s priority case, an arriving reader
still has priority over waiting writers. However, when a writer departs, both waiting
readers and waiting writers have equal priority (that is, a waiting reader or a waiting
writer is chosen randomly).

The dining philosophers Problem (Text book)

The dining philosophers problem is a classic synchronization problem that has formed
the basis for a large class of synchronization problems. In one version of this problem,
five philosophers are sitting in a circle, attempting to eat spaghetti with the help of
forks. Each philosopher has a bowl of spaghetti but there are only five forks (with
one fork placed to the left, and one to the right of each philosopher) to share among
them. This creates a dilemma, as both forks (to the left and right) are needed by each
philosopher to consume the spaghetti.

A philosopher alternates between two phases: thinking and eating. In the rhinking
mode, a philosopher does not hold a fork. However, when hungry (after staying in the
thinking mode for a finite time), a philosopher attempts to pick up both forks on the
left and right sides. (At any given moment, only one philosopher can hold a given
fork, and a philosopher cannot pick up two forks simultaneocusly). A philosopher can
start eating only after obtaining both forks. Once a philosopher starts eating, the forks
are not relingquished until the eating phase is over. When the ecating phase concludes
(which lasts for finite time), both forks are put back in their original position and the
philosopher reenters the thinking phase.

Note that no two neighboring philosophers can eat simultaneously. In any solution
to this problem. the act of picking up a fork by a philosopher must be a critical section.
Devising a deadlock-free solution to this problem, in which no philosopher starves, is

nontrivial.

Design issues of distributed
operating system

Module-1

Distributed System

It is a collection of autonomous computers connected by a communication network

Properties:

1.Each computers has its own memory and clock.

2. Computers communicate with each other by
exchanging messages.

System Architectures

* Minicomputer model
e Workstation model
* Processor pool model

Minicomputer model

* [t consists of a few minicomputers
interconnected by a communication
network.

* Each minicomputer usually has several
interactive terminals attached to it.

* Each user is logged on to one specific
minicomputer, with remote access to
other minicomputers.

* Advantage: Resource sharing

Example:
The early ARPAnet is an example of a distributed
computing system based on the minicomputer model.

L1
c :rlll':::m r _.‘::I
¢ 1]

Sty

Mini-
Computer

Communication
network

L]
L]
Computer —CI
1
]

> Terminals

Mini-
Computer

DODD

Minicomputer model

* |t consists of several workstations interconnected by a
communication network. Workstation
* Inthis model, a user logs onto one of the workstations Workstation Workstation
called his or her “home” workstation and submits jobs for
Communication

execution.
. o ey . ’ Workstation | Workstation
 Normal computation activities required by the user’s network

processes are preformed at the user’s home workstation.

* When the system finds that the user’s workstation does not Workstation
have sufficient processing power for executing the processes Workstation
of the submitted jobs efficiently, it transfers one or more of
the process from the user’s workstation to some other
workstation that is currently idle and gets the process
executed there, and finally the result of execution is returned

to the user’s workstation.
Examples:
Athena and Andrew

Workstation

Processor pool model

* Processors are pooled together to be shared by the users as
needed.

. In this model, there is no concept of home machine.

e Users login to the system as a whole through the terminals
and submit tasks.

 The run server allocates appropriate number of processors
to the task .

 When the computation is completed, the processors are
returned to the pool for use by other users.

Examples:
Amoeba and Cambridge distributed computing systems

Terminals

<]

Communication
network

Pool of processors

Advantages of distributed system

* Main advantage :Price/Performance ratio is high.

Other advantages:

* 1.Resource sharing: Computers can send a request for other resources (s/w or
h/w) available in the system.

2. Enhanced performance: shorter response time and higher system throughput.

3.Improved reliability and availability: System is fault tolerant . Failure of single
system does not affect the whole

4.Modular Expandability: New resources can be added without replacing the
existing resources.

Operating systems for Distributed systems

* Network Operating systems
 Distributed operating systems

* 3 features are used to differentiate the two operating systems above.
* 1.system image

* 2. autonomy

3. fault tolerance capability

Difference

Network OS

e Users are aware about existence
of multiple computers.

* Each computer functions
independently and runs its own
OS and resources are managed
locally.

* No fault tolerant capability

Distributed OS

* It hides the existence of multiple
computers and provides a single system
image to its users.(Transparency)

* There is a single system wide OS and
each computer runs a part/identical
copies of the operating system .They
work in close cooperation with each
other . Resources are managed globally.

* Fault tolerant capability and users can
complete the task with a small loss in
performance

Issues in Distributed Operating system .

1. Global Knowledge

2. Naming

3. Scalability

4. Compatibility

5. Process synchronisation
6.Resource management

/. Security

8.Structure of OS

9.Client server computing model.

1.Global knowledge

e |[ssue:

* It is practically impossible to collect up-to-date information about global state
of distributed system.

* Reason:
* Lack of global clock and lack of global memory.

e Design should incorporate:
* Temporal ordering of events, scheduling of jobs based on arrival etc

* Techniques are needed to solve this problem .

2.Naming

A good naming system for a distributed system should have the
features described below.

* 1. Location transparency

* means that the name of an object should not reveal any hint as to the physical location of
the object.

2. Location independency

* means that the name of an object need not be changed when the object's location
changes.

* Furthermore, a user should be able to access an object by its same name irrespective of the
node from where he or she accesses it.

Naming contd...

A name server is a process that maintains information about named
objects and It acts to bind an object's name to object's location.

* |In distributed systems, name servers/look up tables may be replicated and
stored in different locations for reliability.

* A location-independent naming system must support a dynamic mapping
scheme so that it can map the same object name to different locations at
two different instances of time.

e 2 drawbacks of replication are
1. requires more storage
2. synchronisation requirements need to met

- when one entry is updated/deleted ,changes should be made at all its copies.

3. Scalability

 Scalability refers to the capability of a system to adapt to increased service
load.

* |t is inevitable that a distributed system will grow with time since it is very
common to add new machines or an entire subnetwork to the system.

* A distributed operating system should be designed to easily cope with the
growth of nodes and users in the system.

* That is, such growth should not cause serious disruption of service or
significant loss of performance to users.

* Design suggestions:- Avoid centralised entities, centralised algorithmsand
performs computation in client worksataion itself.

4. Compatibility

* Compatibility refers to notion of interoperability among the resources
In a system.

e 3 different levels exist

1. Binary Level

* All processors execute the same binary instruction even though the
processors may differ in performance .

* Advantage : System development is easy but not recommended for building
distributed systems because it do not support heterogenous systems.

Compatibility

2. Execution Level

* Same source code can be compiled and executed on any computer in the
system

3. Protocol level
All the system components to support a common set of protocols.

Advantage: Individual computers can run different operating systems while not
sacrificing interoperability.

5. Process Synchronisation

e Synchronisation of processes is difficult because there is no shared
memory.

e But it is essential when different systems trying to access a shared
resource.(eg:- fileserver)

* For ensuring correctness, it is necessary that the shared resource be
accessed by a single process at a time.

* This problem is known as mutual exclusion problem.

6. Resource Management

* Resource management is concerned with making both local and
remote resources available to users.

* Users should be able to access remote resources as easily as they can
access local resources.

* In other words ,Specific location of resources should be hidden from
users.

It can done using different ways.

Resource Management cntd..

1.Data migration
e Data is brought to the location where it is needed
* Data may be a file or contents of a physical memory.

 If any changes made ,the orginal location have to be updated.

2. Computation migration

 Computation migrates to another location.
 Mechanism used is RPC (Remote Procedure call)

3. Distributed Scheduling
* Processes are transferred from one location to another by the Distributed OS.

* Itis desirable when a computer where process originated is overloaded or it does not
have necessary resources required for a process .

/. Security

* Two issues must be considered in the design of security

1.Authentication
* Process of guaranteeing that an entity is what it claims to be.

2.Authorisation

* Process of deciding what privileges an entity has and making only those
privileges available.

3. Structuring

* Structuring defines how various parts of OS are organised.
* Different structures:

» 1.Collective Kernel structure (Microkernel)

* OS services such as distributed memory management, scheduling, name services,
RPC, time management etc are implemented as independent processes.

Nucleus ,also called microkernel supports the interaction between processes.
Other functions of kernel are task management, processor management ,etc.
The microkernel runs on all computers in a distributed system.

The other processes may or may not run at a computer.

Examples:
* Mach, Chorus

Structuring contd..

2. Object oriented OS

* |In Collective Kernel structure, services are implemented as process whereas
in object oriented OS ,system services are implemented as objects.

* Each object encapsulates a data structure and defines a set of operations on
that data structure.

* Examples: Amoeba, Cloud

9. Client server model

* Processes are categorised as client and servers.
* Process needs service (client) sends request to servers.

* Severs respond with the request and result may be send back to the
client.

* In systems with multiple servers, location and conversations among
the servers are transparent to the clients.

Communication Networks and Primitives

* Reading Assignment:

Communication Networks

Communication models and the primitives
used for communication

There are two communication models that provide communication
primitives.

1. Message passing model

2. Remote Procedure call

1.Message Passing model

* A form of communication between two processes

* A physical copy of message is sent from one process to the other
* 2 primitives

1.Send(msg, destination)

2 .Receive(source, buf)

These two can be :

1.Blocking VS Non blocking

2.Synchronous VS Asynchronous

Synchronization

» Message passing may be either blocking or non-blocking
» Blocking is considered synchronous

- Blocking send -- the sender is blocked until the message is
received

- Blocking receive -- the receiver is blocked until a message is
available

* Non-blocking is considered asynchronous

- Non-blocking send -- the sender sends the message and
continue

- Non-blocking receive -- the receiver receives:
A valid message, or
Null message
« Different combinations possible

If both send and receive are blocking, we have a rendezvous

2.RPC

e RPC —Remote Procedure Call

Basic RPC Operation

_ Wait for result
Client

A ®
Call remote Return
procedure from call
Request Reply

Call local procedure Time —»
and return results

Note: Communication between caller & callee can be hidden by
using procedure-call mechanism.

RPC Implementation (2/2)

Client

Remote foo (a, b, ¢)

Client stub

8 | (Unblocks client)

Marshalling

-

Server

Remote foo (a, b,)

5] Return volume

Unpack

Server stub

Pack

Steps involved in doing a remote “foo” operation

Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:

1.The client procedure calls the client stub in the normal
way.

2.The client stub builds a message and calls the local
operating system.

3.The client’s OS sends the message to the remote OS.
4.The remote OS gives the message to the server stub.

5.The server stub unpacks the parameters and calls the
server.

Continued ...

Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6.The server does the work and returns the result to the
stub.

7.The server stub packs it in a message and calls its local
OS.

8.The server’s OS sends the message to the client’s OS.
9.The client’s OS gives the message to the client stub.
10.The stub unpacks the result and returns to the client.

Establishing Communication for RPC.

Port mapper
4
5 Port 0 1
Client Server
1.1 need a port

2. Here is your port
3.1 need a handle
5. Communicate using handle

Clock Synchronization

In distributes systems ,there is no global cloavk.

 How do we synchronize clocks with real-world time?

 How do we synchronize clocks with each other?

* How the events in a distributed system are ordered globally ?

Lamport’s Logical Clock

* Lamport’ propsed a scheme to order events in distributed system
using a logical clock concept.

* For partial ordering of events, Lamport defined a new relation called
happened before and introduced the concept of logical clocks for
ordering of events based on the happened-before relation

The Happened-Before Relationship

The happened-before relation on the set of events in a distributed
system is the smallest relation satisfying:

* If aand b are two events in the same process, and a comes before b, then a
- b. (a happened before b)

* If a is the sending of a message, and b is the receipt of that message, then a
2> b.

«Ifa 2bandb =22c, thena = c. (transitive relation)

Note: if two events, x and y, happen in different processes that do not
exchange messages, then they are said to be concurrent.

Note: this introduces a partial ordering of events in a system with
concurrently operating processes.

05-6 Distributed Algorithms/5.2 Logical Clocks

Logical Clocks Concept

Problem:

To determine that an event a happened before an event b, either a common clock
or a set of perfectly synchronized clocks is needed.

Lamport [1978] provided a solution for this problem by introducing the concept of
logical clocks.

The logical clocks concept is a way to associate a timestamp (which may be simply
a number independent of any clock time) with each system event so that events
that are related to each other by the happened-before relation (directly or
indirectly) can be properly ordered in that sequence.

Solution: attach a timestamp C(e) to each event e, satisfying the
following properties:

P1: If aand b are two events in the same process, and a b, then we
demand that C (a) < C (b)

P2: If a corresponds to sending a message m, and b to the receipt of that
message, then also C (a) < C (b)

Implementation of Logical Clocks using counters

Each process Pi maintains a local counter Ci and adjusts this counter
according to the following rules:

(1) For any two successive events that take place within Pi, Ci is
Incremented by 1.

(2) Each time a message mis sent by process Pi, the message
receives a timestamp Tm = Ci.

(3) Whenever a message m is received by a process Pj, Pj adjusts its
local counter Cj:

Cj<+ 1’11&1::{{(7"!,-+ L, T+ 1}

This is called the Lamport’s Algorithm

Ci=8 €o08] Timestamp =6

C1 =7 &}T » 314 CE =6

Ci=6 s o C

=] 3 2= 3 5

Ci=5 Timestamp =3 since 3 is less than
? = S timestamp 4
= Ci=4 en4

Ci=3 €3]

e -

Ci=2 6 | 12 Co=2

Ci=1 e €11 Cr=1

Ci1=0 C2=0

Process A Process P

Fig. 6.4 Example illustrating the implementation of logical clocks by using counters.

Logical Clocks — Implementation using physical clocks

I —] — o ol o T
B 1o 6 A 8 10

I A 2 TS T »
30 8| s 0

40 T i

Y 30 40 50

60 I el o P

55 0 R 51 70

el 80 48 D 69 80

sk I %0 P B P
60 80 100 el ol 100

Fig 5-7. (a) Three processes, each with its own clock. The clocks
run at different rates. (b) Lamport’s algorithm corrects the clocks

05-9 Distributed Algorithms/5.2 Logical Clocks

P1 P2 P3

 Assign the Lamport’s logical clock values for all the
events in the above timing diagram. Assume that each
process'’s local clock is set to 0 initially.

l ¢ a 1 ee .

1.J
2

T g+ 2 ¢ k
3 @ C 4
g
4’\d\5:h 3¢ |
69 |

From the above timing diagram, what can you say about the
following events?

* between a and b: a—>b
* between b and f: bof
 between e and k: concurrent
* between c and h: concurrent

between k and h: k > h

Total Ordering with Logical Clocks

Problem: it can still occur that two events happen at the same time. Avoid
this by attaching a process number to an event:

Pi timestamps event e with Ci (e) |

Then: Ci (a) i happened before Cj (b) j if and only if:
1:Ci(a)< Cj(a); or
2.Ci(@a=Cj(bandi< j

Limitations of Lamport’s logical clock

AP -
(1) 2) (5)
2)
P
CHEEEPY ® ®
(1 4 (5 (7)
(6
P
! ® °
() 3 (@) (5 (6) (7)

C(a) < C(b) does not imply a @ b

Causal Ordering of Messages

* Message delivery is said to be causal if the order in which messages
are received is consistent with the order in which they are sent. That
is, if Send(M,) ->Send (M2) then for every recipient of both messages,
M, is received before M,.

* Basic idea: Buffer each message until the message that immediately
precedes it is delivered.

* |t make use of vector clocks

m
\ m, m, 7’
My
m,

Fig. 3.17 Causal ordering of messages.

Time

* |[n this example, sender Sl sends message m1 to receivers R1, R2, and R3
and sender S2 sends message m2 to receivers R2, and R3.

* On receiving m1, receiver R1 inspects it, creates a new message

m3, and sends m3; to R2 and R3.

* Note that the event of sending m3 is causally related to the event of
sending m1, because the contents of m3 might have been derived in part
from ml; hence the two messages must be delivered to both R2 and R3 in
the proper order, m1 before m3.

* Also note that since m2 is not causally related to either m1 or m3, m2 can
be delivered at any time to R2 and R3 irrespective of m, or m3.

One method for implementing causal-ordering semantics is the CBCAST protocol of
the ISIS system [Birman et al. 1991]. It works as follows:

1. Each member process of a group maintains a vector of n components, where n is
the total number of members in the group. Each member is assigned a sequence number
from O to n, and the ith component of the vectors corresponds to the member with
sequence number i. In particular, the value of the ith component of a member’s vector is
equal to the number of the last message received in sequence by this member from

member i.

2. To send a message, a process increments the value of its own component in its
own vector and sends the vector as part of the message.

3. When the message arrives at a receiver process’s sile, it is buffered by the runtime
system. The runtime system tests the two conditions given below to decide whether the
message can be delivered to the user process or its delivery must be delayed to ensure
causal-ordering semantics. Let S be the vector of the sender process that is attached to the
message and R be the vector of the receiver process. Also let i be the sequence number of
the sender process. Then the two conditions to be tested are

S[il = R[]+ 1 and S[1<R[j] forallj # i

The first condition ensures that the receiver has not missed any message from the
sender. This test is needed because two messages from the same sender are always
causally related. The second condition ensures that the sender has not received any
message that the receiver has not yet received. This test is needed to make sure that the
sender’s message is not causally related to a message missed by the receiver.

If the message passes these two tests, the runtime system delivers it to the user
process. Otherwise, the message is left in the buffer and the test is carried out again for
it when a new message arrives.

Example

(3,2,5,1) means that, until now, A has sent three
messages, B has sent two messages, C

has sent five messages, and D has sent one message to
other processes

Status of vectors at some instance of time

does not hold

1] I
Vectorof | Vectorof | Vectorof | Vectorof
process A | processB | processC |, processD
i]]
3l2|5|13]2|5]|1[i]2]2]|5|1i|3|[2]4]1
i | '
1 i I
Process A sends a new E E E
message to other processes :] !
4| 2] 5] 1 [Mepsage] : i
]] I
]]]
—p Deliver ! \
| : '
§ l: I
i i Delay i
E Ebecause the i
! :cundition :
! :A[1]=C[1]+1 '
! ‘does nothold ! , Delay
: ! | because the
E E E condition
! ! ' ABl<=D[3]
1]]
]]]

Birman-Shiper-Stephenson Causal Message
Ordering

* Before P, broadcasts m, it increments VT,[i] and timestamps m. Thus
VT,[i]-1 is the number of messages from P; preceding m.

* When P; (j € i) receives message m with timestamp VT, from P,
delivery is delayed locally until both of the following are satisfied:
o VT, il = VT, il - 1

* VT, k] © VT _[k]forallk @i
Delayed messages are queued at each process, sorted by their vector
timestamps, with concurrent messages ordered by time of receipt.

* When mis delivered to P, VT, is updated as usual for vector clocks.

